An exponent one-fifth algorithm for deterministic integer factorisation

نویسندگان

چکیده

Hittmeir recently presented a deterministic algorithm that provably computes the prime factorisation of positive integer $N$ in $N^{2/9+o(1)}$ bit operations. Prior to this breakthrough, best known complexity bound for problem was $N^{1/4+o(1)}$, result going back 1970s. In paper we push Hittmeir's techniques further, obtaining rigorous, factoring with $N^{1/5+o(1)}$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Algorithms for Integer Factorisation

The problem of finding the prime factors of large composite numbers has always been of mathematical interest. With the advent of public key cryptosystems it is also of practical importance, because the security of some of these cryptosystems, such as the Rivest-Shamir-Adelman (RSA) system, depends on the difficulty of factoring the public keys. In recent years the best known integer factorisati...

متن کامل

Vector and Parallel Algorithms for Integer Factorisation

The problem of finding the prime factors of large composite numbers is of practical importance since the advent of public key cryptosystems whose security depends on the presumed difficulty of this problem. In recent years the best known integer factorisation algorithms have improved greatly. It is now routine to factor 60-decimal digit numbers, and possible to factor numbers of more than 110 d...

متن کامل

Some Parallel Algorithms for Integer Factorisation

Algorithms for finding the prime factors of large composite numbers are of practical importance because of the widespread use of public key cryptosystems whose security depends on the presumed difficulty of the factorisation problem. In recent years the limits of the best integer factorisation algorithms have been extended greatly, due in part to Moore’s law and in part to algorithmic improveme...

متن کامل

Integer Factorisation on the AP1000∗

We compare implementations of two integer factorisation algorithms, the elliptic curve method (ECM) and a variant of the Pollard “rho” method, on three machines (the Fujitsu AP1000, VP2200 and VPP500) with parallel and/or vector architectures. ECM is scalable and well suited for both vector and parallel architectures.

متن کامل

Primality Testing and Integer Factorisation

The problem of finding the prime factors of large composite numbers has always been of mathematical interest. With the advent of public key cryptosystems it is also of practical importance, because the security of some of these cryptosystems, such as the Rivest-Shamir-Adelman (RSA) system, depends on the difficulty of factoring the public keys. In recent years the best known integer factorisati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2021

ISSN: ['1088-6842', '0025-5718']

DOI: https://doi.org/10.1090/mcom/3658